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Abstract. Implication rules have been used in uncertainty reasoning
systems to confirm and draw hypotheses or conclusions. However a ma-
jor bottleneck in developing such systems lies in the elicitation of these
rules. This paper empirically examines the performance of evidential in-
ferencing with implication networks generated using a rule induction tool
called KAT. KAT utilizes an algorithm for the statistical analysis of em-
pirical case data, and hence reduces the knowledge engineering efforts
and biases in subjective implication certainty assignment. The paper de-
scribes several experiments in which real-world diagnostic problems were
investigated; namely, medical diagnostics. In particular, it attempts to
show that (1) with a limited number of case samples, KAT is capable
of inducing implication networks useful for making evidential inferences
based on partial observations, and (2) observation driven by a network
entropy optimization mechanism is effective in reducing the uncertainty
of predicted events.

Key Words— implication rules, data mining, medical databases, diag-
nostic, entropy search.

1 Introduction

One of the important aspects of using expert systems technology to solve real-
world problems lies in the management of domain-knowledge uncertainty. Several
methods of reasoning under uncertainty have been proposed in the past [1] [4]
[13] [15] [17). All these approaches require a representation of domain knowledge.
Generally speaking, constructing a valid knowledge representation is a time-
consuming task and often subject to opinion biases or semantics invalidity if it is
built purely based on human heuristics. To overcome the difficulties in knowledge
acquisition, several investigations have been carried out in recent years to explore
the effectiveness and validity of automated means such as algorithms to perform
this task.

Pitas et al. [16] have proposed a method of learning general rules from specific
instances based on a minimal entropy criterion. Geiger [9] has formulated a
learning algorithm for uncovering a Bayesian conditional dependence tree. This
algorithm combines entropy optimization with Heckerman'’s similarity networks
modeling scheme [10]. Cooper and Herskovits [2] have developed an algorithmic
method of empirically inducing probabilistic networks, which utilizes a Bayesian
framework to assess the probability of a network topology given a distribution
of cases. A heuristic technique is provided to optimize the search for probable



topologies. Simulation results have shown that a small 37-node, 46-link network
can be derived with 3,000 cases. :

In this paper, we present a new rule-learning algorithm for inducing impli-
cation relations based on a small number of empirical data samples. The major
difference between Cooper and Herskovits' approach and ours is that their ap-
proach focuses on topological induction accuracy while ours is concerned with
the accuracy of inferences based on an induced network, without regards to the
topological uniqueness.

"Our approach to implication network induction has been implemented in a
tool box called KAT, which contains several modules; namely empirical data ac-
quisition interface, implication rule elicitation module, network validation mod-
ule, optimal observation determination module, and embedded diagnostic infer-
encing engine which implements uncertainty reasoning schemes.

Our approach to implication induction draws on the previous work on empir-
ical construction of inference networks [5]. The present study further extends the
earlier work by augmenting the implications with certainty measures. Another
related work is the development of a prediction logic based on a contingency-table
of probabilities, as proposed by Hildebrand et al. [11]. In their work, the emphasis
was on the definition and computation of precision and accuracy of propositions
represented. An analogy was made between contingency table based prediction
logic and formal proposition logic.

] To validate the implication networks generated from KAT, we have conducted

a series of empirical experiments to examine the performance of evidential in-
ferencing with the induced networks. The chosen problem domain is medical
diagnosis; this task shares many commonalities with other real-world problems
as described in [1] [8] and has been in part inspired by earlier studies on knowl-
edge space theory (KST) by Doignon and Falmagne [6]. The KST presents an
interesting set-theory interpretation of knowledge states as well as its mathe-
matical foundations. In our present framework, unlike the one by Doignon and
Falmagne, the interdependencies among knowledge units are the closures under
union and intersection, which can be correctly represented with a directed infer-
ence network. Hence, our implication networks representation (i.e., an instance
of implication networks) can be viewed as a proper subset of the knowledge space
representation.

In this paper, we examine the effectiveness and exactness of inferences with
statistically induced networks. QOur claim is that the proposed network induc-
tion method is capable of generating logically and empirically sound implication-
based domain representations useful in predicting unobserved events upon re-
ceiving certain partial information. While validating the networks in several
real-world task domains, we attempt to demonstrate the generality of the al-
gorithmic rule induction and reasoning approach in solving problems where a
complete set of events is too difficult to observe or the diagnostic judgments are
subject to human errors.



2 Implication Network Induction

In the present work, we refer the term implication network to a directed acyclic
graph in which the nodes represent individual event variables or hypotheses, and
the arcs signify the existence of direct implication (e.g., influence) among the
nodes. The value taken on by one event variable is dependent on the values taken
on by all variables that influence it. Each value indicates the likelihood of an
unobserved event. The value is updated every time néw information is obtained
(e.g., some symptom is observed). The strengths of the event interdependencies
are quantified by functions (e.g., belief functions), as weights associated with the

arcs.
Formally, an implication network can be represented as an ordered quadruple:

Net = (N-I,chpmin)» (1)

where N is a finite set of nodes and Z is a finite set of arcs. o, is the network
induction error and pmy is the minimal conditional probability to be estimated
in the arcs. Furthermore, each induced implication rule can be specified by the
following quadruple:

Imp= (NanthonclaWhWI); (2)

where W, and W; are weight functions that map the pairs of antecedent-consequent
nodes, i.e., Ngnt and Neoneir, and their negations to a real number between 0 and

1, respectively. That is,

W1 : Nant X Ncmg -+ [0, 1]. (3)
Wi i “Neonet X Nopy = [01 1]- (4)
B -B

A| Naap Nanr-B
—A | NoasB N-anr-B

Fig. 1. contingency table where cells indicate the number of co-occurrences.

2.1 The Rule-Elicitation Algorithm

The basic idea behind the empirical construction is that in an ideal case, if
there is an implication relation A = B, then we would never expect to find the
co-occurrences as in Figure 1 that event A is true but not event B, from the
empirical data samples. This translates into the following two conditions:

P(BlA) =1 (5)



P(=A]-B) =1 (6)

In reality, however, due to noise such as sampling errors, we have to relax Condi-
tions 5 and 6. KE takes into account the imprecise/inexact nature of implications
and verifies the above conditions by computing the lower bound of a (1 — aerror)
confidence interval around the measured conditional probabilities. If the verifi-
cation succeeds, an implication relation between the two events is asserted. Two
weights are associated with the relation!, which correspond to the relations’
conditional probabilities P(B|A) and P(—A|-~B). In fact, these weights together
express the degree of certainty in the implication. Once an implication relation
can be determined, another logical operator “&" is readily defined as follows:

(A=B)=(B=A)= (B&1) (D

The elicitation of dependences among the nodes requires considering the
existence (or nonexistence) of direct relationships between pairs of random vari-
ables in a domain model. In theory, there exist six possible types of implications
between any two nodes or events.

The implication rule elicitation algorithm can be stated as follows:

The Rule-Elicitation Algorithm

Begin

set an arbitrary level a. and a minimal conditional probability pmin (this test can be
repeated for different a. and pmin. An example is a. = 0.05 and pmin = 0.5).

for node;, i € [0, imaz — 1] and node;, j € [i + 1, maz)

for all empirical case samples

compute a contingency table Tj; = x:: x:: where Ny, Ni2, N2j, Nz are the

numbers of occurrences with respect to the following combinations:

Ni1 : node; = TRUE A node; = TRUE
N13 : node; = TRUE A node; = FALSE
N3i : node; = FALSE A node; = TRUE
N3z : node; = FALSE A nodey = FALSE

for each rule type k out of the six possible cases.
test the following inequality:

P(z £ Nerrorcen) < ac (8)

based on the two lower tails of binomial distributions Bin(N, pmis) and
Bin(N, pmin), where N and N denote the occurrences of antecedent
satisfactions in the two inferences using a type k implication rule, i.e., in
modus ponens and modus tollens, respectively. a. is the alpha error (or
significance level) of the conditional probability test.

if the test succeeds
return a type k implication rule.

! With respect to the two directions of the inference, i.e. modus ponens vs. modus
tollens. .



endif
endfor

endfor

endfor
End

Here it is assumed that the conditional probability is p in each sample, and
all n samples are independent. If X is the frequency of the occurrence, then X
satisfies a binomial distribution, i.e., X ~ Bin(n,p), whose probability function
px (k) and distribution function Fx (k) are given below:

n -
pxtt) = () oo ©
. . k n
Fx® =px <=3 () e (10)
=0
wherep=1-g.
C.VC QLo
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L AB =G Az A B; mnom

Fig. 2. A contingency table where cells indicate the number of co-occurrences in the
case of multivariate implications.

Thus, the test of hypothesis for A = B can be obtained by computing by a
lower tail confidence interval over a binomial function: ’

Naa-~» N ot . -
XS Nana)= 3 (3) P 0= (1)

1
=0

where n has the same definition as above, and where p is set to the desired
minimal conditional probability. This formula represents the probability that
as small a number as X of unpredicted results would be observed if the true
probability of a predicted result were exactly p. The smaller the probability
given by the formula is, the less likely it is that the true probability of a predicted
result is less than p.

From a theoretical point of view, we could increase the dimensionality of the
distribution to incorporate all variables relevant to the problem in question and



allow the variables to be multivariate as illustrated in Figure 2. In such a case,
the probability function to be considered becomes:

1
P ekt oo ke) = el gl (12)

From a practical point of view, this would also introduce exponential compu-
tational complexity. In the present study, we concentrate on bivariate variables
pasrwise, which reduces the scope of problem for which probabilities have to be
elicited. Often this is known as naive Bayes.

2.2 An Example of Positive Implication Induction

The following section illustrates how the above algorithm is used to verify the
existence of a positive implication rule: A = B. )

~ In the first step of positive implication rule induction, a two-dimensional
contingency table for variables A and B is compiled. As computed from an
empirical data set, the cells in the contingency table contain the observed joint
occurrences for the respective four possible combinations of values. Table 1 shows
an example of the contingency table with respectlve co-occurrences of variables
A and B in a hypothetical data set.

B -B
A(20 (NanB) 1 (Naa-B)
=A(8 (N-anB) 1 (N-ar-B)

Table 1. Distribution of observed occurrences

where N,, denotes the occurrences of the respective situations. The total num-
bers of A and ~B can be derived accordingly as follows:

No =Npgpap+ Npa-s =21
N.p = Ngn-p + N-an- =2

Statistical Tests for Implication Existence

The second step of our induction method consists of an assessment of the nu-
merical constraints imposed by A = B. More specifically, the assessment is based
on the lower tails of binomial distributions Bin(Na, pmin) and Bin(N-g, Pmin)
to test measured conditional probabilities P(B | A) and P(-~A | -B), where
Na = NaaB + Naa-B, NoB = Nagn-~8 + Nopa-B, and pmin i8 an arbitrary
number chosen as the minimal conditional probability for an implication relation.
For each of the two binomial distributions, we check to see whether Inequality 8
can be satisfied.



Suppose that in this example, pmin = 0.85; a. = 0.20. Accordingly the
binomial distribution for testing P(B | A) can be written as: Bin(21,0.85). The
computation of the lower bound proceeds as follows:

P(z < Nan-8) = P(z < 1)
=Pz=0)+P(z=1)
21 21 0 21 20 1
=17 0.85%* 0.15° + 1 0.85*Y 0.15
=0.155

hence
P(z < Naa-B) < a¢

k
ference with A = B in the modus ponens direction is significant with confidence
level (1 — a.). In a similar way, given Bin(2,0.85), the test for P(=A | -~B)

yields:

where symbol ( J ) represents the number of combinations of k in j. The in-

P(z £ Ngn-B) = (g) 0.8520.15° + (f) 0.85' 0.15! = 0.98

hence,
P(z < Ngn-B) £ ac

Since Inequality 8 for the test of P(—A|-B) is not satisfied, A = B cannot be
used for modus tollens inference. Hence, the positive implication rule A => B is
rejected. The overall, worst-case time complexity of inducing an implication
network with the above algorithm is O(nmasz?) where npmqz is the number of
nodes for modeling the domain.

3 Einpirical Cases

This section describes the empirical data used in a series of experiments aimed
to investigate the effectiveness and exactness of induced implication networks in
diagnostic reasoning. The selected task domain is medical diagnosis.

In the current study, we model the different possible knowledge states by
a partial order. Although this formalism could not fully represent all possible
knowledge states, it captures a large part of the constraints on the ordering
among KU and can be used for the purpose of automatic knowledge assessment
[3], [7). The data used to induce implication networks for medical diagnosis
consists of a set of attributes which are continuous variables. In order to build
a network, these attributes were first transformed into bivariate (i.e., binary)
values using thresholds.



3.1 Cancer Diagnosis

The medical diagnostic method developed in this work was first validated using
the empirical cancer data samples collected from 69 healthy people and 31 cancer
patients. Each sample contains the information on 22 chemical residues (i.e.,
attributes) found in a bioposy. In order to build the network, we first transformed
the ordered continuous variables, i.e., trace element concentrations, into two-
valued Boolean variables, by means of thresholding.

Zn = Mg 0.78260.7959 Cd = Zn 0.7096 0.8333 Mg = Ca 0.8823 0.8775
Zu = Ca 0.86950.8775 Cd = Ni 0.80640.8846 Mg = Cu 0.7058 0.7272
Zn = Cu 0695607454 Cd=Co 0.7096 08571 V = Ni 0.7058 0.8076
Co=>Ni 0.72970.8076 Cd = Cu 0.8064 0.8909 Cu = Ca 0.7555 0.7755

Table 2. The original trace concentration data samples.

The derived data set was used to induce the network. Tables 3 and 4 show
a few examples of the original and the derived data set samples, respectively.
Table 3.1 presents a subset of the induced implication network in the form of
pairwise gradation relations.

Pb Ni Co Cd Mn Cr M ) Al Ca Cu Ti Se Categ.

237.84 8.50 1.532 1.045 0.590 1.853 1.717 223.62 1.696 0.010 1806.75 8.71 0.732 0.001 1
203.15 12.70 2.362 1.707 0.898 1.347 1.204 46.33 0.811 4.189 405.20 13.92 0.889 0.001 1
266.34 4.44 0.085 1.013 0.382 2.151 0.340 47.73 0.010 13.137 367.92 17.10 2.896 0.003 2

Table 3. The transformed trace concentration data samples (subset).

Pb Ni_ Co Cd Mn Cr M VAl Ca Cu Ti_  Se Catego
3 X .000 01.000 1.000 1.000 01.00 1.000 0.000 01.00 00.00 1.000 0.000

01.00 01.00 01.000 01.000 01.000 1.000 1.000 00.00 1.000 0.000 00.00 01.00 0.000 0.000 1
01.00 01.00 00.000 01.000 01.000 1.000 1.000 00.00 0.000 1.000 00.00 01.00 1.000 0.000 2

Zn

Table 4. Examples of the induced positive implication rules (subset).

4 Evidential Inferences

To validate the accuracy of the evidential inferences generated from implication
networks, we have conducted a series of experiments in simulated diagnostic task
settings. In particular, we used constructed implication networks as the basis
for evidential inferences. Each simulation run consisted of selecting a portion
of a subject’s sample data and propagating evidential supports throughout the
network.



4.1 Experimental] Method

There exist various interpretations of the imprecision measure associated with
an implication rule [13]. Each interpretation dictates the way in which inferences
are to be performed. Bayesian inference is based on the mapping of an implica-
tion relation into conditional probabilities [15]. Taking an implication A => B for
example, updating the probability would be based upon P(B | A), which should
approach 1.0 if the implication is strong. The difficulty with this scheme stems
from the fact that if further observation of C is obtained and if there is a relation
C = B, then there is a need to update the value of B based upon P(B | A,C),
and so on. As more observations occurs, the conditional probabilities become
practically impossible to estimate, whether subjectively or from sample data.
To address this difficulty in a Bayesian belief network, the assumption of inde-
pendence is made between individual implication relations. In the present work,
we have applied the Dempster-Shafer (D-S) method of evidential reasoning to
propagate supports (whether confirming or disconfirming) throughout the im-
plication network. The D-S inferencing scheme may be regarded as a complex
theoretical deviation from the Bayesian theory. According to the D-S scheme,
the set of possible outcomes of a node is called the frame of discernment, de-
noted by ©. If the antecedents of a rule confirm a conclusion with degree m, the
rule’s effect on belief in the subsets of © can be represented by so-called proba-
bility masses. In our bivariate case of knowledge assessment, there are only two
possible outcomes for each node, g¢;, that is, @ = {known, ~known}.

The D-§ scheme provides a means for combining beliefs from distinct sources,
known as Dempster’s rule of combination. This rule states that two assignments,
corresponding to two independent sources of evidence, may be combined to yield
a new one, that is,

mX)=k Y mi(X)ma(X;) (13)
XinX;=X

where k is a normalization factor. Another evidential inference methodology,
called Certainty Factors (CF) as previously implemented in MYCIN [1], was
also applied in this study. This approach may be viewed as a special case of
the D-S evidential reasoning. The two approaches differ from each other only in
combining two opposite beliefs (i.e., one confirming and the other disconfirming).

4.2 Results in Medical Diagnosis

This section presents the empirical results of evidential inferences using the
databases of cancer diagnosis instances as mentioned in Section 3. In each of
the two experiments, the numeric-valued attributes were first discretized into
binary values which were then used for both network induction and inferencing
validation.

In the case of cancer diagnosis, 40 patient samples were compiled to induce
the implication network with pmin > 0.5 and a. < 0.30. The generated network



containg 87 implication relations. Another set of 60 patient samples was used to
validate the evidential inferencing.

During the validation, a certain percentage of attributes in each test cases
were randomly sampled, and the rest of the attributes were inferred from the
implications. Upon the completion of inferencing, a pair of thresholds (u,v) (i.e.,
bi-directional thresholds) was defined to filter the numeric-valued weights. That
is, if a specific node has a weight w > v, then the node is believed to be TRUE. On
the other hand, if w < u, the node is believed to be FALSE (i.e., the corresponding
attribute does not exist). The resulting filtered predictions were compared with
the actual values in the test samples.

4.3 [ Experiment E-5 I Cancer Diagnosis

Globally speaking, given the distributions of evidentially predicted wesghts and
initial weights with respect to various bi-directional thresholds, it can be ob-
served that in the guessing case, both the correctly predicted nodes and the
errors were almost the linear functions of the observation rate. However, in the
evidential inferencing case, the shapes of these two rate profiles were changed,
indicating that as the observation increased, additional nodes were added to
both the correct predictions and the errors. It should also be noted that the
error rates in the inferencing case were quickly stablized after the amount of
observation exceeded a certain percentage.

To further compare the results of inference-based prediction and initial weight-
based guessing, a pair of bi-directional thresholds was picked up from each of
the two figures such that the selected two cases would have similar error rates.
At 0% sampling, the inferencing case predicted about 45% due to its conser-
vative thresholding. However, as the observation increased, correct predictions
were quickly added along with some wrong predictions. The evidential inferenc-
ing resulted in a consistently better performance in evaluating the unobserved
nodes when the observation sampling exceeded 18%, as compared to the pure
initial weight based guessing. For instance, at 45% observation, the inferencing
method correctly predicted 4% more attributes than the guessing method.

5 Entropy-Driven Diagnosis Based on Induced Networks

In diagnostic reasoning, various rules may be applied to determine which node is
to be observed next. One approach is to randomly choose symptom nodes from
a complete symptom set that spans all the symptoms in the diagnostic struc-
ture, as studied in the previous section. Another approach is to apply entropy
optimization and choose the most informative node. This section investigates
the performance of entropy-driven evidential inferences based on the induced
implication networks.



5.1 Experimental Method

In the following experiments, the expected information yield of each individual
node over all the possible outcomes is computed and weighted by the likelihood
of each outcome. The node that has the maximum expected information yield
is chosen as the potentially most informative one, which is to be observed next.
Formally, the expected information yield of an observation is defined as follows:

Al; = Ecyr(net) — Eqzp(net)
= E..,(net) — [p;E(net | node; = TRUE) + (1 — p;)E(net | node; = FALSE)]

Nmaw Nlmas
=pi 3 (vilogpi +p{logpy) — 3 (pilogps + py logpy)
k=1 k=1

where Ecyrrent(net) denotes the current network entropy. E(net | o) denotes the
updated network entropy having observed node;. p; is the current probability
of node; = TRUE. p} and p) are the updated probabilities of a network node,
having observed that node; = TRUE and node; = FALSE, respectively.

In what follows, we examine the diagnostic performance at the level of in-
dividual nodes. The performance is analyzed with respect to three observation
modes, which are:

(I) inferences based on the entropy-driven observation: nodes are given initial
probabilities (i.e., averaged weights). If a node is observed to be TRUE, it
is assigned 0.9 and 0.1 otherwise, taking into account the random error in
the original data. Inference propagation is performed based on that observed
node; :

(II) inferences based on random observation (as in the previous section): same
as (I) but nodes are chosen at random; and,

(III) no inference condition (or guessing) : same as (II) but no inference propaga-
tion is performed.

Since the comparison between the D-S and Certainty-Factors approaches, as
presented in the preceding section, does not reveal any significant performance
difference, here we shall focus on the methods of observation with the D-S evi-
dential inferencing only. )

5.2 rExperiment E-11 | Cancer Diagnosis

This section examines the performance of evidential inferences under entropy-
driven observation mode, using the empirical cancer database. For the sake of
comparison, the networks to be tested in the following two experiments are
the same as the ones used in the random mode observation as described in
Section 4.2. During the validation, the inferred attributes were accepted based
upon a pair of thresholds (u, v) for filtering the numeric-valued weights, and then
compared with the actual discretized attribute values in the samples.



Unlike the distribution mentioned before in experiment E-5, the distributions
of the weight-based-guessing-only mode have become non-linear to the observa-
tion rate. This indicates that the entropy-driven observation tends to pick up
the nodes with relatively higher uncertainty. At the same time, the inferences
with entropy-driven observation added more information than the purely weight-
based guessing with the same observation mode, revealing that the selection of
the nodes was not based purely on the present weights of the nodes but also
their connectivities in the network.

A main result may be stated that if the entropy-driven observation sampling
is inore than 13%, the performance of inferencing is consistently better than that
of guessing. For instance, at 45% observation, the inferencing scheme produces
11% additional correct predictions as compared to the pure guesses.

It is worth mentioning that for evidential inferencing with two different ob-
servation modes, i.e., entropy-driven vs. random, the results are significantly
different. In the former observation mode, the correctly predicted nodes at 45%
observation can reach up to 87%, whereas the latter produces around 81% given
the same amount of observation. In the random mode, it requires at least 18%
observation in order for the inferencing scheme to show better performance. In
the present entropy-driven mode, this percentage is further lowered to 13%.

6 Conclusion

In this paper, we have described a series of empirical validation experiments
which examined the performance of evidential inferences based on implication
networks that were algorithmically induced by a rule learning tool (KAT). In the
experiments, building implication networks for evidential inferencing in various
real-world diagnostic task domains {(as shown in the experiments, some may
have less strong implications than the others) is translated into the task of
statistically induction, from a small number of individual instances or empirical
data samples (e.g., the sizes of the samples for the experiments are respectively
47, 20, 40, and 153). Generally speaking, evidential inferencing with such induced
networks is effective in generating valid predictions about unobserved events such
as knowledge units and diagnostic attribute values.

This study also explored an entropy-driven diagnostic method and compared
its performance with a random sampling method. The result of comparisons has
shown that while both the random and the minimum-entropy-based methods are
desirable, the latter is in general far better for reducing uncertainties, especially
when the observation rate is more than 13% (e.g., as shown in Experiments 7,
11, and 14).

As validated in the cancer experiments, the binary representation of diag-
nostic attributes enables the induction of valid implication networks, which are
useful not only in the predictions of unobserved attributes but also in patient
diagnostic classification. The conducted experiments also reveal that the impli-
cation network is less sensitive to the particular inferencing scheme performed.
In addition to the D-S and Certainty Factors schemes of evidential inferenc-



ing, we have also implemented and applied other schemes such as the Bayesian
approach, with very little variation in the performance.
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